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Abstract Generalied deEormations of the fcmionic algebra are studied. The polynomial 
representations of these algebras are constructed. All the deformation schema can be 
ml i i ed  by the same polynomial basis (using the Bargmann representation), thus proving 
that all deformed fermionic algebras are isomorphically equivalcnt to the non-deformed 
fennionic algebra. 

1. Introduction 

The quantum deformation (or q-deformation) of classical algebras [l-31 as SUq(2) 
emerged as a mathematical tool from the study of the quantum inverse problem, 
the Yang-Baxter equation and the conformal field theories. (A collection of the 
original papers can be found in [d].) The classical (nondeformed) algebras can he 
constructed using the harmonic oscillator algebra { a ,  a t ,  N )  as the basic underlying 
structure. Biedenharn [SI and Macfarlane [6] constructed the q-deformed oscillator 
operators appropriate for deriving the generators of the q-deformed SUq(2). Many 
authors have also studied the q-deformed counterparts of specific classical [7-91 
and exceptional [lo-121 algebras. For the realization of q-deformed superalgebras, 
however, in addition to the q-deformed boson oscillators one has to introduce q- 
deformed fermion oscillators. q-deformed fermions have, in fact, been introduced by 
several authors [U-161 and have, furthermore, been employed in obtaining oscillator 
realizations of q-deformed superalgebras [17-201. 

The q-deformation scheme for bosons [5,6] is based on the assumption that the 
oscillator algebra hasis 11, a, at, N )  satisfies the relations 

[ a ,  N ]  = a [ U + ,  NI = - a + .  (1) t - - N  a u t - q a  a - q  

These commutation relations define a special deformation scheme. In the literature, 
however, one can find several different deformation schemes, such as, for example, 
the Q-deformed oscillator of Arik-Coon [21] and Kulyshkin [22], the two-parameter 
deformed oscillator [23-251, the parabosonic and parafermionic oscillators [26] and 
their q-deformations [27,28]. The common feature of all these deformations is their 
structural similarity. In all cases an appropriate Fock representation exists, so that 
all the notions derived from the oscillator algebra (such as oscillator realizations of 
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the classical groups, coherent and squeezed states) can also be defined for all these 
algebras. 

It is thus natural to assume that these deformed algebras are partial realizations 
of a generalized deformed algebra. There have indeed been several attempts 
towards describing these algebras in a unified framework. We mention here the 
Odaka-Kishi-Kamefuchi unification methcd [ZS], the Beckers-Debergh method 1291, 
the generalized deformed oscillator [3&32] (which has found application in the 
description of pairing correlations in a single-j shell [33,34], as well as in the 
description of vibrational spectra of diatomic molecules [35]), the bosonization 
method [36,3q and the generalized Q-deformed oscillator [38]. 

In this paper various q-deformations of the fermionic algebra will be studied. A 
polynomial basis of the fermionic algebra will be subsequently constructed, which is a 
Bargmann realization of the algebra. It will be proven that all the deformed fermionic 
algebras possess the same polynomial realization if the creation and annihilation 
fermionic operators satisfy the relations a’ = (a t ) ’  = 0. Therefore all the 
deformed fermionic schemes are isomorphically equivalent. As a result, although 
several different types of q-deformed boson exist, sometimes having different physical 
behaviours (see [33] for an example), only one type of fermion exists, which is 
equivalent to the usual fermion. 

In section 2 of this paper a simplified version of the generalized deformation 
scheme of [30] is given. The deformed fermionic algebra is studied for the various 
deformation schemes in section 3, while in section 4 the equivalence of all these 
schemes is proven through the construction of a polynomial representation. Finally, 
section 5 contains a discussion of the present results and plans for further work. 
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2. The generalized deformed oscillator algebra 

The generalized deformed oscillator was introduced in [30]. Here we give a new 
simplified version of this method. A deformed oscillator is defined by the algebra 
generated by the operators { 1, a ,  a t ,  N) and the slmclure function F( z),  satisfying 
the relations: 

[ a ,  NI = a [ a + ,  NI = -a+ (2) 

and 

a t a = F ( N ) = [ N ]  a a t = F ( N + l ) = [ N + l ]  (3) 

where F(x) is a positive analytic function with F ( 0 )  = 0 and the operator N is a 
number operator. From equation (3) the following commutation and anticommutation 
relations are obviously satisfied: 

[a ,a+]  = [N t 11 -[NI {a,at}  = [N + 11 + [NI. (4) 

The slruclure function F( x) is characteristic of the deformation scheme. In table 
1 we give the structure functions corresponding to the different deformed oscillators 
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Table 1. Structure functions of special deformation schemes 
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Harmonic oscillator 

q-deformed harmonic mcillator [5,6] 

Arik-Coon, Kulyshkiin or Q-deformed oscillator [21,22] 

Two-parameter deformed oscillator [2Y25] 

V Parafmionic oscillator [26] 

n ydeformed parafermionic oscillator (27,281 

VU 2" 

sinh(rr)sinh(r(p+ 1 - 2)) 
sinh*(r) 

of [5,6,21-28,301. All these deformed oscillators are described by the same unified 
theory presented above. 

If h ( z )  is an entire function, then the following properties are true: 

h(N)(U+)"  = (U+)"h(N t m) 

h ( N +  m)(a )"  = ( a ) m h ( N ) .  

The generalized deformed algebras possess a Fock space of eigenvectors of the 
number operator N = F- ' (a+a) ,  where the function F-' must be analytic in the 
vicinity of zero and simultaneously invertible. These eigenvectors are generated by 
the formula: 

1 
In) = -(.+)"lo) m 

where 

(7) 

The generators a+ and a are the creation and annihilation operators of this deformed 
oscillator algebra: 

aln) = mal. - 1) a t l n )  = l / q G i j a l n  t 1). (9) 

3. Deformed fermionic algebras 

Let us consider a structure function F(z) which is a positive analytic function defined 
on the inteml [0,2], such that 

F(0)  = 0 F(1) = 1 F ( 2 )  = 0. (10) 



1592 D Bonalsos and C Daskaioyannis 

Table 2. Stmcture funclions for the bosonic rqesentation of the fermionic algebra. 

. ,  
127,281 

sin(rz)sin(r(Z - 2)) 

sin2ir) 
N 

Exa ples such functions are given in table 2. 

by definition, 
' le basis of the representation is degenerated to the states 10) and Il), because, 

at lo )  = F(1)Il) = 11) U + l l )  = 0 (11) 

(U+)210)  = 0 (U+)ZI l )  = 0. (12) 

( a y  = ( U + ) Z  = 0. 

(since F(2) = 0), and 

In the same way we can prove that 

(13) 

As an example we consider the case of the q-deformed fermions, which satisfy 
the q-deformed equation [ll-161, 

a a t  + q a f a  = qN.  (14) 

The algebra of the operators {a,a+, N) satisfying equation (14) is given by 

[a, N] = a [at, N] = -at (15) 

a t a  = qN-'sin2(N?r/2) aa+ = qNws2(N?r/2) (16) 

and 

corresponding to the structure function (ii) of table 2. It is clear that, in this case, 
equation (13) is satisfied. 

Another example is provided by the usual fermions. Jannussis et af [36, 371 have 
introduced the notion of the bosonization of the fermions using a boson mapping of 
the fermionic algebra: 

cos( ?m/Z) cos( ?rn/2) 
b a'= bt m d ic i  a =  

where [b, bt] = 1, b tb  = n is a bosonic algebra. This method is equivalent to the 
choice of the structure function (i) in table 2 

Yet another example is provided by the parafermionic oscillators introduced by 
Ohnuki and Kamefuehi [26], which can be described by the structure function: 

F ( 1 )  = z ( p  - z) p = 2 , 3 , .  . . . (18) 
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In the special case p = 2 this parafermionic oscillator has the characteristic fermionic 
behaviour described by equation (13). It corresponds to the structure function (E) in 
table 2. It is worth noticing that the deformed oscillator described by the structure 
function of equation (18) corresponds to the deformed oscillator having the energy 
spectrum of a P6schl-Rller potential [31] or the energy spectrum of a shifted Morse 
potential [39]. 

A further example is provided by the q-deformed parafetmionic oscillator in 
[27,28], which corresponds to the structure function (iv) of table 2 

In all these algebras the number operator N has two possible eigenvalues, 0 and 
1, therefore satisfying the relations: 

N 2 = N  ( l - N ) ' = l - N .  (19) 
In all cases of deformed fermionic algebras in table 2, starting from equation (19) we 
can prove that 

a'a = N aut = 1 - N. (20) 
Therefore the known fermionic deformations of table 2 satisfy the usual fermionic 
algebra: 

a u t  + a+a = 1 U* = (a+)* = 0. (21) 
The inverse is also true: the usual fermionic algebra defined by equation (21) satisfies 
the properties (19) and (ZO), which implies that deformed relations such as the one 
in equation (14) are valid. In order to see this, one can write (with q = e.) 

'hking into a m u n t  that in the case of fermions NZ = N, this relation can be written 
as 

TZ 7 3  

2! 3! qN = 1+ N r t  N - t  N - t . . .  

= 1 +  N(er-1)  = 1 + ( y -  l ) N  = (1- N) t y N  

which coincides with equation (14) if equation (20) is taken into account. 

are isomorphically equivalent structures possessing the usual matrix representation: 
These assertions lead to the conclusion that all the deformed fermionic algebras 

;) u t - - + , + =  (; ;) 
and 

(One can easily verify that the matrices of equations (22)-(23) satisfy equations (19)- 
(21). Thus, because of the proof given after equation (21), they also satisfy equation 

It should be noticed that the equivalence between the y-deformed fermions 
of equation (14) and the usual fermions has been proven in [40] by means of a 
transformation. Here this equivalence is proven for all versions of deformed fermions, 
not only for the particular deformation of equation (14). 

(14).) 
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4.  Polynomial realization of the deformed Permionic algebras 

For each deformed algebra a polynomial realization can be found [31,32]. This 
realization is the corresponding deformed version of the Bargmann representation 
1411 for the harmonic oscillator. These representations have the same structure as 
the usual Bargmann case but the notion of the derivative and integral should be 
deformed. The same is true for the q-deformed harmonic oscillator [5,6] (with real 
q). As a result, the q-analysis has been developed recently by many authors [42-48]. 

In [31] the deformed algebra corresponding to the PiSschl-'Mer spectrum was 
studied, which is exactly the case of a deformed oscillator with a finite-dimensional 
Fock basis, while in [32] the deformed oscillator algebra corresponding to the 
Coulomb potential was studied, which is an example of a deformed oscillator algebra 
with an infinite-dimensional Fock basis but with a spectrum having one accumulation 
point. The usual oscillator algebra is an example of an oscillator with an infinite- 
dimensional basis and a spectrum without any accumulation points. The same is true 
for a q-deformed oscillator with real q, while the case with q equal to a root of unity 
is an example of a deformed algebra with a finite-dimensional Fock space. 
AI the deformed fermions defined in the previous section correspond to deformed 

oscillators with a two-dimensional Fock basis. In this section following the same 
method as in [31,32] we define the polynomial basis (Bargmann representation) of 
the fermionic algebra. 

The polynomial realization of the deformed oscillator is defined as follows. Let 
71 be the set of the entire functions 

m 

f(2) = Ca,m. 
n=Q 

The projection operator Jk projects the function f ( 2 )  to the truncated polynomial 
J k f ( z )  of degree k: 

Ir 

The space spanned by the deformed oscillator basis {In),. = 0,1 ,2 , .  . . , p - 1) 
is equivalent to the space Jp-l'H spanned by the basis: 

2n - n = 0 , 1 )  ..., p-1. m 
The case of the finite-dimensional Fock space can be found in [31], while the case of 
an infinite-dimensional space can be found in [32]. 

In the deformed fermionic case the Fock space has a two-dimensional basis. 
Therefore, all the polynomials or functions involved should be truncated, conserving 
only the constant and the linear terms. The Fock basis corresponds to 

10) - 1 11) - 2 (27) 

F( 1) = 1. (28) 

because in all cases in table 2 the structure function is normalized to unity: 
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Any function f( z )  E .Il% can be written as follows 

where 

and 

The element 1.) is the coherent (but not normalized) eigenstate of the destruction 
operator a with eigenvalue f :  

,212) = 212). (32) 

The multiplication of the function f ( z )  by z can be regarded as an application 
from the space of entire functions Z into X. The restriction of this application in 
the space JIZ is formally represented by J l z J 1 .  This operation corresponds to the 
following one: 

The derivative a/& is also an application defined in the space Z. The restriction 
of this application in JiZ is easily calculated: 

In the space JIZ we can define the operator 

a i  - _  - F ( z  o $) . aDz (35) 

Without difficulty we can show that 

The normalization of the fermionic structure functions (equation (28)) implies that 
the deformed derivation coincides with the usual derivation in all fermionic cases of 
table 2. Thus we have 
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The algebra of the creation and destruction operators corresponds to 

U --* J,o z 0 5, (38) 

N .- z o  alaz. (40) 
Using the above correspondences the familiar fermion properties can be verified: 

a 
(uu') If) (51 o z 0 J i )  0 J 0 - 0 J 1  (fu + fiz) = f iz  (41) 

(42) 

( 1  a z  1 
(uta) If) --* ( 4  0 g 0 4 )  o(J1 O.OJI) ( fU + fi.) = fu 

therefore 

{%.+I If) = If). (43) 

The operator z o a/a,z defined by equation (35) is a one-to-one application in 
the subspace J I X  - JuX.  Therefore the inverse of this operator exists in this subspace 
and it is given by 

Using the above operator the integration operator Int, can be defined by 

Without difficulty the following relation can be shown: 

and, by definition, 

[ f(u)d,u = Int,f(b) - IntDf(u). 

The definition of the coherent state of equation (32) implies that the deformed 
exponential function is defined by 
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Without dficulty we can show the deformed generalizations of the usual identities: 

The space J,X also has the structure of a two-dimensional Hilbert space with the 
product 

The above defined product can be formally generated by introducing a measure 
dp  (2, z )  on the complex z plane having the properly 

/ d p ( 2 , z ) i n z m  &,,,[VI]! (55) 

and 

If A is an operator defined on the two-dimensional Hilbert space spanned by the 
vectors IO), \I), then there is a matrix representation defined by 

This operator corresponds to a kernel A(w, U )  acting on the space J , X :  

and 

where f (z )  = fu f f,z. 
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The product of two operatots A and B corresponds to the convolution of the 
corresponding kernels: 

(wIABlu) = /dp(Z,z)A(w,  i ) B ( z , C ) .  (60) 

This equation implies the following resolulion of the identity: 

where 1 is the unity in the two-dimensional Hilbert space spanned by the vector basis 
In), n = 0,l. The following relations can be proven without difficulty, using the 
definition (equation (49)) of the deformed exponential function: 

/ dp (z , z )eTD(u i ) f ( z )  = f(u) (62) 

J 
/dp(i ,z)exp,(=i l )  = Et" = 1 + t .  

j d p ( i , z ) A ( z , i )  = T r ( A ) =  CA, , , .  (65) 

d p ( i ,  z)expD(ui)expD(z.lir) = expD(u.lir) (63) 

(64) 
I 

n=O 

If A is an operator defined by equation (59), then 
I 

n=0 

These formulae indicate that the measure dp(i,r) has the basic propertics of a 
Gaussian measure. 

5. Discussion 

Several deformed fermionic algebras (summarized in table 2) have been considered. 
It has been proven that all of them are mutually equivalent, as well as being equivalent 
to the usual fermionic algebra, if the fermionic annihilation and creation operators 
obey the relations: 

2 = (CL+)Z = 0 (66) 
because they accept the same polynomial realization. As a result, only one type of 
fermion with the property of equation (66) can exist (the usual fermion), while in the 
case of bosons several different versions of deformed bosons can exist [some of them 
are shown in table 1). (It is worth remembering at this point that the physical 
properties implied by different versions of deformed bosons can be significantly 
different (see [33,34] for an example).) 

The uniquenas of the fermionic algebra proven in this paper simplifies 
considerably the problem of representing q-deformed superalgebras (see [17-20] for 
some examples) in a coupled basis of bosons and fermions. Work in this direction is 
in progress. 
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