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Absiract. Generalized deformations of the fermionic algebra are studied. The polynomial
representations of these algebras are constructed. Al the deformation schemes can be
realized by the same polynomial basis (using the Bargmann representation), thus proving
that all deformed fermionic algebras are isomorphically equivalent to the non-deformed
fermionic algebra.

1. Introduction

The quantum deformation (or g-deformation) of classical algebras [1-3] as SU (2)
emerged as a mathematical tool from the study of the quantum inverse problem,
the Yang-Baxter equation and the conformal field theories. (A collection of the
original papers can be found in [4].) The classical (non-deformed) algebras can be
constructed using the harmonic oscillator algebra {a,a*, N} as the basic underlying
structure. Biedenharn [5] and Macfarlane [6] constructed the g-deformed oscillator
operators appropriate for deriving the generators of the g-deformed SU,(2). Many
authors have also studied the g-deformed counterparts of specific classical [7-9]
and exceptional [10-12] algebras. For the realization of g-deformed superaigebras,
however, in addition to the g-deformed boson oscillators one has t0 introduce g-
deformed fermion oscillators. g-deformed fermions have, in fact, been introduced by
several authors [11-16] and have, furthermore, been employed in obtaining oscillator
realizations of g-deformed superalgebras [17-20].

The g-deformation scheme for bosons [5,6] is based on the assumption that the
oscillator algebra basis {1, a,a*, N} satisfies the relations

aat —gota=q¢ VN [a,N]=a [at, N] = —a™. (1)

These commutation relations define a special deformation scheme. In the literature,
however, one can find several different deformation schemes, such as, for example,
the ¢-deformed oscillator of Arik—Coon [21] and Kuryshkin [22], the two-parameter
deformed oscillator [23-25], the parabosonic and parafermioric oscillators [26] and
their g-deformations [27,28]. The common feature of all these deformations is their
structural similarity. In all cases an appropriate Fock representation exists, so that
all the notions derived from the oscillator algebra (such as oscillator realizations of
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the classical groups, coherent and squeezed states) can also be defined for all these
algebras.

It is thus natural to assume that these deformed algebras are partial realizations
of a generalized deformed algebra. There have indeed been several attempts
towards describing these algebras in a unified framework. We mention here the
Odaka-Kishi-Kamefuchi unification method [28], the Beckers-Debergh method [29],
the generalized deformed oscillator [30-32] (which has found application in the
description of pairing correlations in a single-j shell [33,34], as well as in the
description of vibrational spectra of diatomic molecules [35]), the bosonization
method [36,37] and the generalized Q-deformed osciilator [38].

In this paper various g-deformations of the fermionic algebra will be studied. A
polynomial basis of the fermionic algebra will be subsequently constructed, which is a
Bargmann realization of the algebra. It will be proven that all the deformed fermionic
algebras possess the same polynomial realization if the creation and annihilation
fermionic operators satisfy the relations a? = (at)? = 0. Therefore all the
deformed fermionic schemes are isomorphically equivalent. As a result, although
several different types of g-deformed boson exist, sometimes having different physical
behaviours (see [33] for an example), only one type of fermion exists, which is
equivalent to the usual fermion.

In section 2 of this paper a simplified version of the generalized deformation
scheme of [30] is given. The deformed fermionic algebra is studied for the various
deformation schemes in section 3, while in section 4 the equivalence of all these
schemes is proven through the construction of a polynomial representation. Finally,
section 5 contains a discussion of the present results and plans for further work.

2. The generalized deformed oscillator algebra

The generalized deformed oscillator was introduced in [30]. Here we give a new
simplified version of this method. A deformed oscillator is defined by the algebra
generated by the operators {1,¢,a%, N} and the structure function F(z), satisfying
the relations:

[e,N]==a [a*,N] = —a* @
and
ete = F(N) = [N] aat = F(N 4+ 1) =[N + 1] 3)

where F'(x) is a positive analytic function with F(0) = 0 and the operator N is a
nurber operator. From equation (3) the following commutation and anticommutation
relations are obviously satisfied:

fa,e*] =[N + 1} - [N] {a,e®} =[N +1] +[N]. (4)

The structure function F{z) is characteristic of the deformation scheme. In table
1 we give the structure functions corresponding to the different deformed oscillators
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Table 1. Structure functions of special deformation schemes,

F(x) Reference
i T Harmonic oscillator
il S
ii — g-deformed harmonic oscillator [5,6]
9-9
%_
it g : Arik-Coon, Kuryshkin or Q-deformed oscillator [21,22]
gz - p--.'s
iv g p-1 Two-parameter deformed oscillator [23-25]
v z(p+1-2z) Parafermionic oscillator [26]
vi smh(rx)su.lh(zr (pt1=2) g-deformed parafermionic oscitlator [27,28]
sinh*( 1)
vii zh [30]
sn{rx)
vi . 30
" sn(r) (30

of [5,6,21-28,30]. All these deformed oscillators are described by the same unified
theory presented above.
If h(z) is an entire function, then the following properties are true:

R(N)(a*)™ = (a*)™h(N + m) )
A(N + m)(a)™ = (a)™A(N). 6)

The generalized deformed algebras possess a Fock space of eigenvectors of the
number operator N = F~!(a*a), where the function F'~! must be analytic in the
vicinity of zero and simultaneously invertible. These eigenvectors are generated by
the formula:

—_— 1 n”
ln> = m(a+) IO) Y]
where
[n}! = []ik] = f[ F(k). (8)
k=t k=t

The generators ¢ and a are the creation and annihilation operators of this deformed
oscillator algebra:

aln) = Virlaln—1)  a*n) = fn + aln + 1). ®)

3. Deformed fermionic algebras

Let us consider a structure function F'(x) which is a positive analytic function defined
on the interval [0, 2], such that

F0)=0 F(l)=1 F(2)=0. (10)
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Table 2. Structure functions for the bosonic representation of the fermionic algebra.

F(z) Reference
i sin?{me /2) [36,37)
i g=lsin’(wz/2) [11-16]
iif 1.'_(2 - 1:). [26)
o sin(rz) .*';11;(1'(2 -z)) (27,281
sin*(7)

Examples of such functions are given in table 2.
The basis of the representation is degenerated to the states [0) and |1}, because,
by definition,

a*l0} = F(DI=1)  eF1)=0 (11)
(since F'(2) = 0), and

(eF)0)=0  (aF)?1)=0. (12)
In the same way we can prove that

(2)* = (a*)*=0. (13)

As an example we consider the case of the g-deformed fermions, which satisfy
the g-deformed equation [11-16],

aat + qa"’a = qN. (14)
The algebra of the operators {a,a™, N} satisfying equation (14) is given by

[a,N]=a [a*,N] = —a* (15)
and

ata = qN'lsinz(Nﬂ'/Z) aat = ¢ cos}(N=/2) (16)
corresponding to the structure function (i) of table 2, It is clear that, in this case,
equation (13) is satisfied,

Another example is provided by the usual fermions. Jannussis et a/ [36, 37] have

introduced the notion of the bosonization of the fermions using a boson mapping of
the fermionic algebra:

__cos(rn/2) ot = cos(wn/2)
a—-———\/nT1 b +_b+—n—1 (17

where [b,bT] = 1, btb = n is a bosonic algebra. This method is equivalent to the
choice of the structure function (i) in table 2.

Yet another example is provided by the parafermionic oscillators introduced by
Ohnuki and Kamefuchi [26], which can be described by the structure function:

F(z)=a(p—-1z) p=2,3,.... (18)
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In the special case p = 2 this parafermionic oscillator has the characteristic fermionic
behaviour described by equation (13). It corresponds to the structure function (iii) in
table 2. It is worth noticing that the deforred oscillator described by the structure
function of equation (18) cotresponds to the deformed oscillator having the energy
spectrum of a Pdschi-Teller potential [31] or the energy spectrum of a shifted Morse
potential [39].

A further example is provided by the g-deformed parafermionic oscillator in
[27,28], which corresponds to the structure function (iv) of table 2.

In ali these algebras the number operator N has two possible eigenvalues, § and
1, therefore satisfying the relations:

N*=N (1- N =1-N. (19)

In all cases of deformed fermionic algebras in table 2, starting from equation (19) we
can prove that

ata= N aat =1-N. (20)
Therefore the known fermionic deformations of table 2 satisfy the usual fermionic
algebra:

aat +ata =1 at=(a*)P=0. (21)
The inverse is also true: the usual fermionic algebra defined by equation (21} satisfies

the properties (19) and (20), which implies that deformed relations such as the one
in equation (14) are valid. In order to see this, one can write (with g = €™)

1.2 NZ 1,.3 NS
TR
Taking into account that in the case of fermions N2 = N, this relation can be written
as

qN=eTN=1+TN+ + ..,

N1+ Nt 4 ND 4 ND
g =1+ N7+ 2—!+ §+

=14+ NEe"-1)=14+(¢g—-1)N=(1-N)+gN

which coincides with equation (14) if equation (20} is taken into account.
These assertions lead to the conclusion that all the deformed fermionic algebras
are isomorphically equivalent structures possessing the usual matrix representation:

00 01
a—ur_:(l 0) a+—--*cr+=(0 0) (22)

1+0'u“ 10
N—= "(0 0)' (23)

(One can easily verify that the matrices of equations (22)~(23) satisfy equations (19)-
(21). Thus, because of the proof given after equation (21), they also satisfy equation
(14).)

It should be noticed that the equivalence between the g¢-deformed fermions
of equation (14) and the usual fermions has been proven in [40] by means of a
transformation. Here this equivalence is proven for all versions of deformed fermions,
not only for the particular deformation of equation (14).

and
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4. Polynomial realization of the deformed fermionic algebras

For each deformed algebra a polynomial realization can be found {31,32]. This
realization is the corresponding deformed version of the Bargmann representation
[41] for the harmonic oscillator. These representations have the same structure as
the usual Bargmann case but the notion of the derivative and integral should be
deformed. The same is true for the g-deformed harmonic oscillator [5,6] (with real
q). As a result, the g-analysis has been developed recently by many authors [42-48],

In [31] the deformed algebra corresponding to the Poschl-Teller spectrum was
studied, which is exactly the case of a deformed oscillator with a finite-dimensional
Fock basis, while in [32] the deformed oscillator algebra corresponding to the
Coulomb potential was studied, which is an example of a deformed oscillator algebra
with an infinite-dimensional Fock basis but with a spectrum having one accumulation
point. The usual oscillator algebra is an example of an oscillator with an infinite-
dimensional basis and a spectrum without any accumulation points. The same is true
for 2 g-deformed oscillator with real g, while the case with g equal to a root of unity
is an example of a deformed algebra with a finite-dimensional Fock space.

All the deformed fermions defined in the previous section correspond to deformed
oscillators with a two-dimensional Fock basis. In this section following the same
method as in [31,32] we define the polynomial basis (Bargmann representation) of
the fermionic algebra.

The polynomial realization of the deformed oscillator is defined as follows. Let
‘H be the set of the entire functions

flz2)=>a,z". (24)
n=0

The projection operator J), projects the function f(z) to the truncated polynomial
J, F(z) of degree k:

k
Lo F(2) =D a,2" € JH. (25

n=t

The space spanned by the deformed oscillator basis {|n),n =0,1,2,...,p -1}
is equivalent to the space J,_,H spanned by the basis:

zn

vinl

The case of the finite-dimensional Fock space can be found in [31], while the case of
an infinite-dimcnsional space can be found in {32].

In the deformed fermionic case the Fock space has a two-dimensional basis.
Therefore, all the polynomials or functions involved should be truncated, conserving
only the constant and the linear terms. The Fock basis corresponds to

n=0,1,...,p—1. (26)

[0} — 1 1) — = (27)
because in all cases in table 2 the structure function is normalized to unity:

F(1)=1. (28)
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Any function f(z) € JyH can be written as follows

1 n
f(2)=2fnﬁ=fu+f125(2|f) 29)
n=0
where
(2= Zﬂ \/—]-, (n] = (0] + (1] (30)
and

z \/—I )y = fol0) + A1) 31

The element |z} is the coherent (but not normalized) eigenstate of the destruction
operator o with eigenvalue Zz:

a|z) = z|2). (32)

The multiplication of the function f(z) by z can be regarded as an application
from the space of entire functions A into #. The restriction of this application in
the space JiH is formally represented by J;zJ;. This operation corresponds to the
following one:

1
Jl(z Zanz“) =2,z € 1 - JyH. (33)
n=4l

The derivative 8/8z is also an application defined in the space H. The restriction
of this application in J;H is easily calculated:

1
(8/82) > e,z" = a; € ;M. (34)
a=0

In the space J;% we can define the operator
a 8
2 glp(..l 35
Opz = (z ° Bz) (3%
Without difficulty we can show that

a

n o__ n—1 f _
anz = F(n)z ifn=0,1. (36)

The normalization of the fermionic structure functions (equation {28)) implies that
the deformed derivation coincides with the usual derivation in all fermionic cases of
table 2. Thus we have

8 o
szt = (ho g 7) 162) 37)
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The algebra of the creation and destruction operators corresponds to

¢ — Jiozold; (38)
8 o
= _—

a e (Jl °5;° Jl) (39)

N — 208/8-=. (40)

Using the above correspondences the familiar fermion properties can be verified:

g
(aa+) |f} — (Jiozo J})o (Jl °5,° Jl) (fo+ fiz) = f1z (41)

3]
(‘1+ﬂ) |f} — (J1 e 32 © Jl) o(Jiozo ) (fo+ fiz)=fy (42)
therefore

{a,a*}F) = 11). (43)

The operator z o 8/8p2 defined by equation (35) is a one-to-one application in
the subspace J,H — JyH. Therefore the inverse of this operator exists in this subspace
and it is given by

|
(zo-aD—z) Z=F—(1}'Z. (44)

Using the above operator the integration operator Inty can be defined by

3 =1
Intp = (zo 3Dz) az. (45)

Without difficulty the following relation can be shown:

1
Intpz® = ﬁ =z  Intpz=0. (46)

For any function f(z), given by equation (29), we can define the integral
Intof() = [ f(w)dpu = foe @)
and, by definition,
fa " (u) tpu = Intp () = Intp £(). (48)

The definition of the coherent state of equation (32) implies that the deformed
exponential function is defined by

k3

1 -
expp(zw) = {z|w) = Z (zw)' =1+ =z. (49)
a=0 ’

{n}
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Without difficulty we can show the deformed generalizations of the usual identities:

/: (%) Flw)dpu = £(2) - £(0) (50)
( 3Dz) [ an = 1(2) - 710 (1)
(%) exppwz] = Jy2 o expp[wz] = 2 (52)
/uz exppwn] dpu = w™ ! (expplwz] - 1) = =. (53)

The space JyH also has the structure of a two-dimensional Hilbert space with the

product
(flg) = [f (53—;) 9(2)]:=0- (54)

The above defined product can be formally generated by introducing a measure
du (Z,z) on the complex z plane having the property

fdp: (2,2)2"z" =6, . [n]! (55)
and
(flg) = / du (2, 2)5(2)e(z). (56)

If A is an operator defined on the two-dimensional Hilbert space spanned by the
vectors |0}, 1}, then there is a matrix representation defined by

1
Y. Ay mln){ml. (57)

el

This operator corresponds to a kernel A(w,w) acting on the space J|H

p—1 1
Alw, ) = (w|Aju) = w|n u) Ay —— 5
( )(li)méu m{wn)(mfu) m%ﬂ \/W\/—l' (58)
and
(wlAlf) = [du(z2)A0w.2)1() (59)

where f(z) = fy + fi=
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The product of two operators A and B corresponds to the convolution of the
corresponding kerncls:

(w] A Blu) = /d#(é,z)A(w, 3)B(z, @) (60)
This equation implies the following resolution of the identity:
p-1
Jautz 2aiel = ¥ lmpinl = 1 Q)
n={}

where 1 is the unity in the two-dimensional Hilbert space spanned by the vector basis
In), n = 0,1, The following relations can be proven without difficulty, using the
definition (equation (49)) of the deformed exponential function:

[ dp (2, 2) expp(u) f(2) = f(w) (62)

/du (£, z) expp(uz) expp(z1) = expp(utd) (63)

il

1
]dp(i,z)epr(zft) =) " =1+t (64)

n=0

If A is an operator defined by equation (59), then

1
Jauz A =Tr(4) = 3 Aps. (65)
n=0

These formulae indicate that the measure du(Z,2) has the basic propertics of a
Gaussian measure.

5. Discussion

Several deformed fermionic algebras (summarized in table 2) have been considered.
It has been proven that all of them are mutually equivalent, as well as being cquivalent
to the wswval fermionic algebra, if the fermionic annihilation and creation operators
obey the relations:

al=(at)? =0 (66)

because they accept the same polynomial realization. As a result, only one type of
fermion with the property of equation (66) can exist (the usual fermion), while in the
case of bosons several different versions of deformed bosons can exist (some of them
are shown in table 1). (It is worth remembering at this point that the physical
properties implied by different versions of deformed bosons can be significantly
different (see [33,34] for an example).)

The uniqueness of the fermionic algebra proven in this paper simplifies
considerably the problem of representing g-deformed superalgebras (see [17-20] for
some examples) in a coupled basis of bosons and fermions. Work in this direction is
in progress.
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